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The decrease of AG* within a row of the periodic table 
(R = C, 6b; R = N, 6f and 6g; R = O, 6a) is more subtle 
and may be due to a decrease in the C - R - C torsional bar
riers in the order R = CR'2 > R = NR ' > R = O. ' ' 

The slight increase in AG* as the oxidation state is in
creased from R = S in 6c to R = SO in 6d and R = SO2 in 
6e may be due both to an increase in torsional barriers" 
and to an eclipsing strain between the S = O and its neigh
boring C—H bonds.12 

The cyclic hydrazines 7a and 7b exhibit both a low-tem
perature process attributable to nitrogen inversion, and a 
higher-energy process corresponding to ring flipping. Al
though predicted, this phenomenon has historically been ob
served in relatively few of the hydrazines investigated,13 

and serves to confirm our earlier interpretation involving 
urazole 3.1 

Current work in this laboratory includes attempts to pre
pare an optically active sample of 1 or 2 which is suitable 
both for DNMR and polarimetric racemization studies, as 
it is currently suspected that discrepancies in AG* deter
mined by the two methods might well be noted.14 
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Dissymmetric 1,3-Dienes. IV.1 Syntheses and 
Enantiomerization Barriers of Some Acyclic 
n'c-Dialkylidene Compounds 

Sir: 

Recent interest in the syntheses and enantiomerization 
rates of acyclic w'c-dialkylidene compounds (1), rendered 
chiral by restricted rotation about the sp2-sp2 single bond, 
has led to several dynamic N M R investigations2 and to an 
optical resolution yielding a polarimetric A G*.3 We report 
here our initial results in a search for a molecule possessing 
an activation energy and spectroscopic properties suitable 
for both resolution and DNMR study and attempts to eluci

date further the structural and steric factors influencing the 
enantiomerization process. 

Entry into the desired acyclic w'c-dialkylidene system 
was gained by reduction of the double Stobbe condensation 
product (2)4 and by pyrolysis of the sulfone (6)5 (Scheme 
I). Reduction of the half-acid ester 2 with NaAlH2(O-
CH 2 CH 2 OCHa) 2 in refluxing benzene affords diol (3)6 in 
ca. 60% yield, which upon treatment with triphenylphos-
phine dibromide7 at 0° yields 30% of pure dibromide (4). 
Compound 4 reacts with NaCN and NaN 3 to produce the 
corresponding dinitrile and diazide 5a and 5b, respectively. 

3 R - o H , a c , . ' 20.4 kcal/mol 

5a R = CN, 4 G i o ^ " 1 9 ' ° ^ 3 1 / " 1 0 1 

5b R = N thermally unstable 

The methylene resonances in the NMR spectra of com
pounds 3-5 appear as AB quartets at ambient temperature, 
coalescing to sharp singlets as the temperature is increased. 
The enantiomerization barriers, AG0*, determined by 
DNMR,8 indicate that although there is a substantial ener
gy barrier associated with racemization in these f/c-diiso-
propylidene compounds, it is not of the magnitude required 
for facile resolution. We therefore sought compound 10. 
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Although inaccessible via the double Stobbe condensa
tion with pival aldehyde, the diester (7) could be obtained 
in high yield by pyrolysis of the known sulfone 6.5 Selective 
photosensitized isomerization9 of 7 does not proceed quanti
tatively, but a photostationary state can be achieved con
sisting of 25% of isomer 8,5 which is separable by prepara
tive TLC on silica gel. Whereas reduction of esters 7 and 9 
with diisobutylaluminum hydride occurs cleanly to produce 
alcohols 12 and 13, respectively, similar reduction of 8 is 
accompanied by extensive rearrangement. 

Isolation of diol 10 can be accomplished by preparative 
TLC; ' 0 however its N M R spectrum was found to consist of 
three singlets in CDCb, CCU, CS2, benzene-*^, and pyri
d ine -^ , due to accidental equivalence of the diastereotopic 
methylene protons." Splitting of the tert-buty\ singlet is 
observed in the presence of the chiral shift reagent 
Eu(tfc)3,12 indicating that 10 is chiral at room temperature, 
as expected. 

An estimate of the racemization barrier in ester 8 can be 
made based on the temperature dependence of its N M R 
spectrum measured in the presence of chiral shift reagent, 
Eu(tfc)3.13 At 150° (the highest temperature attainable 
using bromobenzene-^5 as the solvent) the peaks corre
sponding to the diastereomeric association complexes show 
incipient coalescence, placing a lower limit of ~24 kcal/mol 
on AGi for compound 8. In contrast, the isomeric ester 7 
does not show evidence of diastereomeric complexes with 
Eu(tfc)3 at room temperature (although large pseudo-con
tact shifts are observed), indicating that the energy barrier 
for 7 is less than ~ 1 3 kcal/mol. A closer approach to the 
value could not be made because of spectral broadening 
which occurred as the probe temperature was decreased. 

The tertiary alcohol (11) also displays only three singlets 
in the NMR, and readily cyclodehydrates to the isomerized 
tetrahydrofuran (14), in which all four a-methyl groups are 
nonequivalent. Thermal instability of 14 precluded determi
nation of its AGc1. 

Synthesis and resolution of other systems 1, are planned. 
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The Ethylation of syn- and antf/'-l-Phenylethane 
Diazotate. Dependence of Reaction Stereochemistry on 
Configuration at the Diazo Linkage1,2 

Sir: 

The thermolysis of nitrosoamide 1, via anr/'-diazo ester 2 
(eq 1), and the acylation of .SjVi-I-phenylethane diazotate 
(3), via syn-diazo ester 4 (eq 2), yield 1-phenylethyl 2-na-
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phthoate in similar yields, and with comparable stereo
chemistry (~73% overall retention).3 It was concluded that 
"the stereochemistry of the diazo species is not an impor
tant variable".3 This conclusion need not be general. The 
potential carboxylate counterion is large and resonance sta
bilized; these factors could inhibit its ability to quickly col
lapse with 1-phenylethyl cation, and favor geometrical 
equilibration of the ion pairs arising from 2 and 4. 

We now report the first stereochemical studies carried 
out directly on an anti-diazotate. Comparison of the ethy
lation of anti- 1-phenylethane diazotate (5) (eq 4), with that 
of its syn isomer, 3 (eq 3), shows that the stereochemistry of 
the diazo species is an important variable. 

a/jfi'-l-Phenylethane diazotate (5) was prepared from 1-
phenylethylhydrazine,2'4 KOC 2 H 5 -C 2 H 5 OH, and isoamyl 
nitrite.3'5 Removal of volatile constituents (0.25 mmHg) af
forded 5 (ir, Nujol3) free of alcohols, although isoamyloxide 
(and ethoxide) must have been present. Treatment of 5 
(suspension in ether or solution in 15% HMPA-ether) with 
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